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                                                    Abstract 16 

Predetermination of background error covariance matrix B is challenging in existing ocean 17 

data assimilation schemes such as the optimal interpolation (OI). An optimal spectral 18 

decomposition (OSD) has been developed to overcome such difficulty without using the B 19 

matrix.  The basis functions are eigenvectors of the horizontal Laplacian operator,  pre-calculated 20 

on the base of ocean topography, and independent on any observational data and background 21 

fields. Minimization of analysis error variance is achieved by optimal selection of the spectral 22 

coefficients.  Optimal mode truncation is dependent on the observational data and observational 23 

error variance and determined using the steep-descending method. Analytical 2D fields of large 24 

and small mesoscale eddies with white Gaussian noises inside a domain with 4 rigid and curved 25 

boundaries are used to demonstrate the capability of the OSD method. The overall error 26 

reduction using the OSD is evident in comparison to the OI scheme.  Synoptic monthly gridded 27 

world ocean temperature, salinity, and absolute geostrophic velocity datasets produced with the 28 

OSD method and quality controlled by the NOAA National Centers for Environmental 29 

Information (NCEI) are also presented. 30 

  31 
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1. Introduction  32 

 33 
In ocean data assimilation (or analysis), the coordinates (x, y, z) are usually represented 34 

by the position vector r with grid points represented by rn,  n = 1, 2, …, N, and observational 35 

locations represented by r(m), m = 1, 2, …M. Here, N is the total number of the grid points, and M 36 

is the total number of observational points.  A single or multiple variables c = (u, v, T, S, …), no 37 

matter two or three dimensional, can be ordered by grid point and by variable, forming a single 38 

vector of length NP with N the total number of grid points and P the number of variables. For 39 

multiple variables, non-dimensionalization is conducted before forming a single vector c  (Chu et 40 

al. 2015) with “true”, analysis, and background fields (ct, ca, cb) and observational data (co) being 41 

represented by N and M dimensional vectors, 42 

         (1) (2) ( )
, , , , 1 , , 2 , , ( ), ( ),..., ( ) ,    ( ), ( ),..., ( )T T M

t a b t a b t a b t a b N o o o oc c c c c cc r r r c r r r ,        (1) 43 

where the superscript ‘T’ means transpose. The innovation (or called the observational increment 44 

                                                             ,o bd c Hc                                                      (2) 45 

represents the difference between the observational and background data at the observational 46 

points r(m). Here, H =[hmn] is an M×N linear observation operator matrix converting the 47 

background field cb (at the grid points, rn) into “first guess observations” at the observational 48 

points r(m) (Fig. 1).  49 

The analysis error (εa) and observational error (εo) are defined by  50 

                                                 ,    T
a a t o o tε c c ε H c c ,                                           (3a) 51 

which are evaluated at the grid points.  The two errors are usually independent of each other,  52 

                                                      
1

10,     
1

N
T
o a

nN
ε ε .                                  (3b) 53 

Minimization of the analysis error variance  54 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65



4 
 

                                                         2 minT
a aE ε ε                                                (4) 55 

gives the optimal analysis field ca for the “true” field ct.  56 

A common practice in ocean data assimilation (or analysis) is to use a N×M  weight 57 

matrix W= [wnm]  to blend cb (at the grid points rn) with innovation d (at observational points 58 

r(m))  (Evensen, 2003; Tang and Kleeman 2004; Chu et al. 2004a, 2015; Galanis et al. 2006; Oke 59 

et al. 2008; Han et al. 2013; Yan et al. 2015)  60 

                                                   a bc c Wd .                                                           (5) 61 

Minimization of the analysis error variance with respect to weights,  62 

                                                   2 / 0nmE w .                                                         (6) 63 

determines the weight matrix  64 

                                                        1( )T TW BH HBH R .                                    (7) 65 

Here, B is the N×N background error covariance matrix;  R is the M×M observational error 66 

covariance matrix and  is usually simplified as a product of an observational error variance ( 2
oe ) 67 

and  an identity matrix I,  68 

                                                       2
oeR I .                                                                (8) 69 

Substitution of (7) into (5) leads to the optimal interpolation (OI) equation,  70 

                                    1( )T T
a bc c BH HBH R d ,                                         (9) 71 

which produces  the analysis field ca from the innovation d. The challenge for the OI method is 72 

the  determination of the background error covariance matrix B.    73 

An alternative approach is to use a spectral method with lateral boundary (Г) information 74 

to decompose the  variable anomaly at the grid points [c(rn) - cb(rn)] into (Chu et al. 2015),    75 
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1

( ) ( ) ( ),    ( )  ,
K

a n b n K n K n k k n
k

c c s s ar r r r r                            (10) 76

where {ϕk} are basis functions; K is the mode truncation. The eigenvectors of the Laplace 77

operator with the same lateral boundary condition of (c – cb) can be used as the set of the basis 78

functions  {ϕk} and written in matrix (Chu et al. 2015)  79

                                 

1 1 2 1 1

1 2 2 2 2

1 2

( ) ( ) ... ( )
( ) ( ) ... ( )
... ... ... ...
( ) ( ) ... ( )

K

K
kn

N N K N

r r r
r r r

Φ

r r r

.                                   (11) 80

For a given mode truncation K, minimization of the analysis error variance (4)  with respect to 81

the spectral coefficients  82

                                            2 / 0,    1,...,K kE a k K                                                  (12) 83

gives the spectral ocean data assimilation equation (Chu et al. 2015), 84

                                              
1T T T

a bc c FΦ ΦFΦ ΦH d ,                                              (13) 85

where F is an N N (diagonal) observational  contribution matrix 86

                          

1

2

1

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

,     
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

M

n nm
mn

N

f
f

f h
f

f

F
00

000

.                                  (14) 87

Here, the matrices Φ, F, and H are all given in comparison to the OI equation (9) where the 88

background error covariance matrix B needs to be determined. 89

This spectral method has been proven effective for the ocean data analysis. Chu el al. 90

(2003a, b) named the spectral method as the optimal spectral decomposition (OSD).   With it,  91

several new ocean phenomena have been identified  from observational data such as a bi-modal 92
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structure of chlorophyll-a with winter/spring (February–March) and fall (September–October) 93 

blooms in the Black Sea (Chu et al. 2005a), fall–winter recurrence of current reversal from 94 

westward to eastward on the Texas–Louisiana continental shelf from  the current-meter, near-95 

surface drifting buoy (Chu et. al 2005b), propagation of long Rossby waves at mid-depths 96 

(around 1000 m) in the tropical North Atlantic from the Argo float data (Chu et al. 2007), and 97 

temporal and spatial variability of the global upper ocean heat content (Chu 2011) from the data 98 

of the  Global Temperature and Salinity Profile Program (GTSPP, Sun et al.  2009).  99 

 The spectral mode truncation is the key for the success of the OSD method. It acts as a 100 

spatial low pass filter for the fields to allow the highest wavenumbers corresponding to the 101 

highest spectral eigenvalues without aliasing due to the information provided from the 102 

observational network.  103 

Questions arise: Can a simple and effective mode truncation method be developed  to take 104 

into account of model resolution (i.e., total number of model grid points)? What are the major 105 

differences between OI and OSD? What is the quality and uncertainty of the OSD method?  The 106 

purpose of this paper is to answer these questions. The remainder of the paper is organized as 107 

follows. Section 2 describes error analysis. Section 3 presents the steep-descending mode 108 

truncation method. Section 4  shows  idealized “truth” and “observational” fields. Section 5 109 

compares analysis fields between OSD and OI. Section 6 introduces three synoptic monthly 110 

gridded world ocean temperature, salinity, and absolute geostrophic velocity datasets produced 111 

with the OSD method and quality controlled by the NOAA National Centers for Environmental 112 

Information (NCEI). Conclusions are given in Section 7. Appendices A and B briefly describe 113 

several methods to determine the H matrix. Appendix C shows the determination of basis 114 
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functions. Appendix D presents the Vapnik-Chervonkis dimension for mode truncation. 115 

Appendix E depicts a special B matrix for this study. 116 

2. Error Analysis  117 

Low mode truncation  does not represent the reality well, while high mode truncation may 118 

contain too much noise. Let the truncated spectral representation sK in (10) at the grid points 119 

form an N-dimensional vector,  120 

                                         1 2 ( ), ( ),..., ( )T
K K K K Ns s ss r r r .                                        (15) 121 

The M-dimensional innovation vector [see (2)] 122 

                                     (1) (2) ( ) ( ), ( ),..., ( )T Md d dd r r r                                         123 

at observational points can be transformed into the grid points  124 

                              

( )

1

1

( ) ,    

M
m

nm M
m

n n n nm
mn

h d
D D f h

f
r ,                                      (16)   125 

where D(rn)  represents the observational innovation at the grid points, 126 

                                   ( ) ( ) ( )n o n b nD c cr r r .                                                                 (17)            127 

From Eq(3a), observations at grid points are computed using co(rn) = HTco(rm) . The original 128 

background state, cb(rn), keeps in the grid space.  The matrix form of (16) is  129 

                                              TFD H d ,                                                                   (18)   130 

where fn denotes contribution of all observational data unto the grid point rn. The larger the value 131 

of fn, the larger the observational influence on that grid point (rn). D is an  N-dimensional vector 132 

at the grid points,                   133 

                                              1 2 ( , ,..., )T
ND D DD                                                    (19) 134 
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The analysis error (i.e., analysis ca versus “truth” ct) in the spectral data assimilation [see (10)] is 135 

given by 136 

                            

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

a n a n t n

a n b n o n b n o n t n

K n n o n

c c

c c c c c c

s D

r r r

r r r r r r

r r r
                        (20)     137 

Here,  (10) and (17) are used. The analysis error is decomposed into two parts 138 

                              ( ) ( ) ( ),a n K n o nr r r                                                                   (21) 139 

with the truncation error given by 140 

                                 ( ) ( ) ( )K n K n ns Dr r r ,                                                               (22a)   141 

and the observational error given by 142 

                                   ( ) ( ) ( )o n o n t nc cr r r .                                                               (22b) 143 

3. Steep-Descending Mode Truncation  144 

 The Vapnik-Chervonkis dimension (Vapnik 1983; Chu et al. 2003a, 2015) was used to 145 

determine the optimal mode truncation Kopt. As depicted in Appendix D, it depends  only on the 146 

ratio of the total number of observational points (M) versus spectral truncation (K) and does not 147 

depend on the total number of model grid points (N). This method neglects observational error 148 

and ignores the model resolution. In fact, the  analysis error variance over the whole domain is 149 

given by      150 

            2 2= 2 ,    T T T T T
a a a K K K o o o o o o

ME e
N

ε Fε ε Fε ε Fε ε Fε ε Fε ,   (23) 151 

where    2
oe  is the observational error variance [see (8)]. Here, the observational error is 152 

assumaed the same at grid points as at the grid points. This is due to the simplification of the  153 

error covariance matrix R = 2
oe I. The Cauchy-Schwarz inequality shows that  154 
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2

2 2

2

2 / ( / )

T T T T
a K K K K o o o o

K K o o

E

E E M N e M N e

ε Fε ε Fε ε Fε ε Fε
                        (24) 155 

The relative analysis  error reduction at  the mode-K can be expressed by the ratio 156 

                      
2 2

1 1
2 2

2 / /ln ,      2,3,...
2 / /

K K o o
K

K K o o

E E M Ne Me N K
E E M Ne Me N

                    (25) 157 

Both EK and EK-1 are large for small K (low-mode truncation), which may lead to a small value 158 

of γK. Both EK and EK-1 are small for large K (high-mode truncation), which also leads to a small 159 

value of γK. An optimal truncation should be between the low-mode and high-mode truncations 160 

with a larger value (over a threshold) of  γK. This procedure is illustrated as follows. The values 161 

(γ2, γ2, …, γKB) are calculated using (25) from a large KB (say 250).  The mean and standard 162 

deviaition of γ can be computed as, 163 

                                    
2

1 ,
1

BK

K
KBK

2

2

1= ( )
2

BK

K
KB

s
K

.                                (26) 164 

Suppose that  the relative error reductions  (γ2, γ3, …, γKB) satisfy the Gaussian distribution. An 165 

100(1 - α)% upper one-sided confidence bound on γ  is given by  166 

                                                         th z s ,                                                          (27) 167 

which is used as the threshold for the mode truncation. Here, z is the random variable satisfying 168 

the Gaussian distribution with zero mean and standard deviation of 1. If several γ values exceed 169 

the threshold, the highest mode 170 

                                                          max( )
K th

OPTK K                                                     (28) 171 

is selected for mode truncation. After the mode truncation KOPT is determined,  the spectral 172 

coefficnets (ak, k = 1, 2, …, KOPT) can be calculated, and so as the  truncation error variance 173 

2
OPTKE .  174 
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3.3. Multi-Platform Observations 175 

Let  observation be conducted by L instruments with different ( )l
oe deployed at ( )lm

lr (ml = 1, 176 

2, .., ML; l = 1, 2, …, L). The total number of observations is 
1

L

l
l

M M . The M-dimensional 177 

observational vector is represented by  178 

                  
1 2( ) ( )(1) (2) (1) (2)

1 1 1 2 2 2
( )(1) (2)

( ), ( ),..., ( ), ( ), ( ),..., ( ),...,

( ), ( ),..., ( )L

M M
o o o o o oT

o M
o L o L o L

c c c c c c

c c c

r r r r r r
c

r r r
             (29) 179 

The observational error variance is given by 180 

                            (1) 2 (2) 2 (L) 2
1 2[ ] [ ] ... [ ]T

o o o o L oM e M e M eε Fε .                              (30) 181 

The relative error reduction γK for mode truncation (25) is replaced  by 182 

           

2 ( ) ( ) 2
1 1

1 1

2 ( ) ( ) 2

1 1

2 / ( ) /
ln ,      2,3,...

2 / ( ) /

L L
l l

K K l o l o
l l

K L L
l l

K K l o l o
l l

E E M Ne M e N
K

E E M Ne M e N
           (31) 183 

After the mode truncation is determined,  the OSD equation (13) is used to get the analysis field. 184 

4. “Truth”, “Background”, and “Observational” Fields   185 

Consider an artificial non-dimensional horizontal domain (-19 < x < 19, -15 < y < 15) with 186 

the four curved rigid boundaries (Fig. 2): 187 

                    

/ 2     (west)
0.3cos sin

   / 2      (east)          10 8 10

/ 2     (south)
0.2sin 1 cos

   / 2      (north)          8 5 8

x y x

y x y
                 (32) 188 

The domain is discretized with Δx = Δy = 0.5. The total number of the grid points inside the 189 

domain (N) is  3569. Fig. 3 shows the first 12 basis functions {ϕk},  which are the eigenvectors of 190 

the Laplacian operator with the Dirichlet boundary condition, i.e., b1 = 0 in (C3) of Appendix C.  191 
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The first basis-function 1( )nx  shows a one-gyre structure. The second and third basis 192 

functions 2( )nx and 3( )nx show the east-west and north-south dual-eddies. The fourth basis-193 

function 4( )nx  shows the east-west slanted dipole-pattern with opposite signs in the 194 

northeastern region (positive) and the southwestern region (negative). The fourth basis-function 195 

4( )nx  shows the tripole-pattern with negative values in the western and eastern  regions and 196 

positive values in between. The higher order basis functions have more complicated variability 197 

structures.  198 

 Two “truth” fields for the non-dimensional domain with 4 rigid and curved boundaries (Fig. 199 

2) contain multiple mesoscale eddies (treated as “truth”) given by 200 

      

2( , ) 25 / 40 3cos ( , ) sin ( , )

0.3cos sin ,    0.2sin 1 cos
10 8 10 8 5 8

, , 3,2, / 2

t x y

x y

c x y y L x y L x y

x y x y x y

L L

 ,                    (33)   201 

for the large-eddy field (Fig 4a) and given by 202 

             

2( , ) 25 / 40 3cos ( , ) cos ( , )

0.3cos sin ,    0.2sin 1 cos
10 8 10 8 5 8

, , 7,5,0

t x y

x y

c x y y L x y L x y

x y x y x y

L L

                     (34) 203 

for the small-eddy field (Fig. 4b). The background field  is given by 204 

                                     2( , ) 25 / 40bc x y y                                                                      (35) 205 

The “observational” points {r(m)} are randomly selected inside the domain  (Fig. 5) with the total 206 

number (M) of 300. The “observational” points {r(m)} are kept the same for all the sensitivity 207 

studies. The domain is discretized by Δx = Δy = 0.5 with total number (N) of grid points of 3,569.  208 
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Sixteen sets of “observations” (co) are constructed from Figs.4a, b using the  analytical 209 

values plus white Gaussian noises (εo) of zero mean and various standard deviations (σ) from 0 210 

(no noise) to 2.0 with 0.1 increment from 0 to 1.0 and 0.2 increment from 1.0 to 2.0 (total 16 211 

sets),   generated by the MATLAB, 212 

                                                         ( ) ( ) ( )( ) ( ) ( )m m m
o t oc cr r r .                                       (36) 213 

Figs. 6a and 6b show 6 out of  the 16 constructed sets with σ = (0, 0.2, 0.5, 10., 1.6, 2.0).   Both 214 

OSD and OI methods are used to get the analysis field ca(rn) from these  “observations”.  The 215 

bilinear interpolation (see Appendix B) is used for the observation operator H in this study.  216 

5. Comparison between OSD and OI 217 

a.  OSD Analysis Fields 218 

The steep-descending mode truncation KOPT depends on the user-input parameter  eo  [see 219 

(25)] and observational noise σ.  2
aE  and γK are computed from the “observational” data in Figs. 220 

6a and 6b. The threshold of mode truncation (27) varies with the significance level α. In this 221 

study, (e0, σ) vary between 0 and 2; α has  two levels of  (0.05, 0.10) with z0.05 = 1.645, z0.10 = 222 

1.287 in (27).  For given values of e0 (= 0.2) and σ (= 0.8), the optimal mode truncation depends 223 

on the significance level α with KOPT =  58 for α = 0.05 (Fig. 7a) and KOPT =  67 for α = 0.10 (Fig. 224 

7b).   Most results shown in this section is for  α = 0.05 since it it a commonly used significance 225 

level. 226 

  For the large-eddy field, KOPT is not sensitive to  the  values of σ and eo. It is  7 in the 227 

upper-left portion and 6 in the lower-right portion of Table 1.  For the small-eddy field,  KOPT 228 

takes (58, 67) for the most cases, 178 for the high noise levels ( 1.8 ) and low eo values 229 

( 1.0oe ), and 82 for the low noise levels ( 0.1)  and low eo values ( 0.3oe ) (Table 2).  230 
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 The analysis field  using the OSD data assimilation (13) for a particular user-input parameter  231 

eo  and noise level σ, ( , , )OSD
a n oc er , is represented in Fig. 8a (the large-eddy field) using  232 

“observations” in Fig. 6a (with various σ), and in Fig. 8b (the small-eddy field) using  233 

“observations” in Fig. 6b (with various σ). Comparison between Figs. 8a, b and Figs. 4a,b  234 

demonstrates the capability of the OSD method with the analysis fields ( , , )OSD
a n oc er  fully 235 

reconstructed for all occasions. 236 

b.  OI Analysis Fields 237 

With the assumption that the c  field is statistically stationary and homogeneous, the OI 238 

equation (9) with the R and B matrices represented by (8) and (E1) [see Appendix E] is used to 239 

analyze the “observational” data with three user-defined paramters: (ra, rb, eo). Here, ra and rb are 240 

the decorrelation scale and zero crossing (rb > ra);  eo is the standard deviation of the 241 

observational error. Let these paramters take discrete values with total number of Pa for ra, Pb for 242 

rb, and Pe for eo. In this study, we set Pa = Pb  = Pe = 5. eo has  5 values (0.2, 0.5, 1.0, 1.5, 2.0). 243 

Considering the horizontal domain from -15 to 15 in both (x, y) directions, ra takes 5 values (2, 3, 244 

4, 5, 6);     (rb - ra) takes 5 values (0.5, 1.0, 1.5, 2.0, 2.5). There  are 125 combinations of   (ra, rb, 245 

eo) for the test.  246 

The analysis field  from the OI data assimilation (9),  ( , , , , )OI
a n a b oc r r er , with four different 247 

sets of user-input parameters (ra, rb - ra, eo): (2, 2.5, 1), (4, 5.5, 1), (6, 8.5, 1), and (6, 8.5, 2),  are 248 

presented in Fig. 9a (the large-eddy field) using  “observations” in Fig. 6a, and in Fig. 9b (the 249 

small-eddy field) using  “observations” in Fig. 6b. Comparison between Figs. 9a, b and Figs. 250 

4a,b  demonstrates strong dependence of the OI output  on the selection of the parameters  (ra, rb, 251 

eo). For the large-scale eddies (Fig. 9a), the analysis fields ca are very different  from the “truth” 252 

field ct for ra = 2, rb = 2.5, eo = 1 for all “observations” (Fig. 6a); the difference between the 253 
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reconstructed and “truth” fields decreases as ra and rb increase; the two fields are quite similar 254 

when  ra = 6,  rb = 8.5 for both  eo = 1 and 2.  Such similarity reduces with increasing eo. For the 255 

small-scale eddies (Fig. 9b), the analysis fields ca are totally different from the “truth” field ct for 256 

ra = 6, rb =8.5, eo = 1 and 2 for all “observations” (Fig. 6b),  less different as ra and rb decrease; 257 

and are quite  similar to  ct when ra =2,  rb = 2.5,   eo = 1.   258 

c.  Root Mean Square Error  259 

The analysis field from OSD,  OSD
ac ,  depends only on  the observational error variance 2

oe  260 

and its uncertainty is represented by the root mean square error ROSD,  261 

                          
2

1

1( , ) ( , , ) ( )
N

OSD OSD
o a n o t n

n

R e c e c
N

r r .                               (37a) 262 

Average over all the values of eo leads to the overall uncertainty  263 

                            
2

1

1( ) ( , , ) ( )
o

N
OSD OSD

a n o t n
e ne

R c e c
NP

r r .                                (37b) 264 

The analysis field using OI ( OI
ac )  depends on three user-defined parameters (ra, rb, eo). Its 265 

uncertainty due to a particular parameter is represented by  266 

             
2

1

1( , ) ( , , , , ) ( )
b o

N
OI OI

a a n a b o t n
r e nb e

R r r r e
NP P

r r ,               (38a) 267 

                  
2

1

1( , ) ( , , , , ) ( )
a o

N
OI OI

b a n a b o t n
r e na e

R r r r e
NP P

r r ,                 (38b) 268 

                 
2

1

1( , ) ( , , , , ) ( )
a b

N
OI OI

o a n a b o t n
r r na b

R e r r e
NP P

r r ,                  (38c) 269 

which are compared to ( )OSDR  and ( , )OSD
oR e .  270 
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Fig. 10 shows the comparison between ( , )OI
aR r  and ( )OSDR  for 5 different ra values: 271 

(2, 3, 4, 5, 6) and two types (the large-scale and small-scale) of the “observational” field. 272 

( , )OI
aR r  monotonically increases with σ and is generally  larger than ( )OSDR . For the 273 

“observations” representing  the large-scale eddy fields (Lx = 2, Ly = 3, see Fig. 6a),   ( )OSDR274 

increases slightly from 0.32 for σ = 0 to 0.34  for  σ = 2.0. However, ( , 2)OI
aR r  is always 275 

larger than ( )OSDR and increases from 0.37  for σ = 0 to 1.13  for  σ = 2.0; ( , 3)OI
aR r is 276 

smaller than ( )OSDR for small σ, equals ( )OSDR at certain σ0,  and larger than ( )OSDR for σ > 277 

σ0.  The value of σ0 increases with ra from 0.4 for ra = 3 to 1.0 for ra = 6. ( , 6)OI
aR r increases 278 

from 0.13  for σ = 0 to 0.62  for  σ = 2.0.  For the “observations” representing  the small-scale 279 

eddy field (Lx = 5, Ly = 7, see Fig. 6b),    ( )OSDR increases slightly from 0.22 for σ = 0 to 0.27  280 

for  σ = 0.4; evidently from 0.27 for σ = 0.4 to 0.40 for σ = 0.5; and slowly from 0.40 for σ = 0.5 281 

to 0.71 for σ = 2.0. However, ( , )OI
aR r  is much larger than ( )OSDR  for any ra. For example,  282 

( , 2)OI
aR r increases from 0.43  for σ = 0 to 1.14  for  σ = 2.0; …, ( , 6)OI

aR r increases 283 

from 0.89  for σ = 0 to 1.06  for  σ = 2.0.  284 

 Fig. 11 shows the comparison between ( , )OI
bR r  and ( )OSDR  for 5 different (rb – ra) 285 

values: (0.5, 1.0, 1.5, 2.0, 2.5) and two types (large-scale and small-scale) of the “observational” 286 

fields. ( , )OI
bR r  monotonically increases with σ and is generally larger than ( )OSDR . For the 287 

“observations” representing  the large-scale eddy fields (Lx = 2, Ly = 3, see Fig. 6a), 288 

( , )OI
b aR r r  monotonically increases with σ from around 0.2 for  σ = 0 to around 0.78  for  σ = 289 

2.0 for all the values of (rb – ra) with σ0 from 0.4 for   (rb – ra) = 0.5 to 0.6 for (rb – ra) = 2.5. For 290 

the “observations” representing  the small-scale eddy fields (Lx = 5, Ly = 7, see Fig. 6b),  291 
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( , )OI
b aR r r  is much larger than ( )OSDR  for any (rb -ra) and σ.  For example,  292 

( , 0.5)OI
b aR r r  increases from 0.53  for σ = 0 to 1.00  for  σ = 2.0; …, ( , 2.5)OI

b aR r r293 

increases from 0.58  for σ = 0 to 1.00  for  σ = 2.0.  294 

 Fig. 12 shows the comparison between ( , )OI
oR e  and ( , )OSD

oR e  for 5 different eo 295 

values: (0.2, 0.5, 1.0, 1.5, 2.0) and two types (large-scale and small-scale) of the “observational” 296 

fields. First, ( , )OI
oR e monotonically increases with σ and is evidently  larger than ( , )OSD

oR e  297 

for all σ and eo. Second, dependence of ( , )OSD
oR e  on σ is insensitive to the change of eo.   For 298 

the “observations” representing the large-scale eddy fields (Lx = 2, Ly = 3, see Fig. 6a),   299 

( , )OI
oR e  is close to ( , )OSD

oR e  for σ < 1.2, and much larger than ( , )OSD
oR e  for σ > 1.2 with 300 

eo = 0.2 and 0.5; and vice versa  with eo = 1.0, 1.5, and 2.0. ( , 2.0)OI
oR e increases slightly 301 

from 0.98 at σ = 0 to 1.08 at  σ = 2.0 and is almost twice of ( , )OSD
oR e  for all σ.   For the 302 

“observations” representing  the small-scale eddy fields (Lx = 5, Ly = 7, see Fig. 6b), ( , )OI
oR e   303 

is also  larger than ( , )OSD
oR e . For example, ( , 2.0)OI

oR e increases slightly from 1.37 at σ = 304 

0 to 1.42 at   σ = 2.0, which is 2-3 times of  ( , 2.0)OSD
oR e  for σ < 1.0.  305 

 The overall performance between OI and OSD with various noise levels (σ) can be 306 

estimated by the error ratio,  307 

      
2

1

( ) 1ˆ( ) ,    ( ) ( , , , , ) ( )ˆ ( )
a b o

OSD N
OI OI

a n a b o t nOI
r r e na b e

R R c r r e c
NP P PR

r r .     (39)  308 

Fig. 13 shows the dependence of κ(σ) (evidently less than 1) on σ for the two types (large-scale 309 

and small-scale eddies) of the “observational” fields represented by Figs 6a and 6b with two 310 

different significance levels (α = 0.05, 0.10) for the threshold of mode truncation in the OSD 311 
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method (27). At α = 0.05 (Fig. 13a), for the large-scale eddy field, κ(σ)  takes 0.71 at σ = 0; 312 

fluctuates  with σ; and decreases to 0.57 at σ = 2.0. For the small-scale eddy field, κ(σ) increases 313 

monotonically with σ  from 0.43 at σ = 0 to 0.67 at σ  = 2.0. At α = 0.10 (Fig. 13b), for the large-314 

scale eddy field, κ(σ)  takes 1.17 at σ = 0; decreases monotonically  with σ  to 0.40 at σ = 2.0. For 315 

the small-scale eddy field, κ(σ) increases monotonically with σ  from 0.36 at σ = 0 to 0.70 at σ  = 316 

2.0. It means that the OSD performs better for the test case.  Integration of κ(σ) over the whole 317 

interval of the noise level [0, 2.0] yields 318 

                     
2

0

0.05 0.1
1ˆ ( ) 0.76 0.72 large-scale eddy
2

0.51 0.59 small-scale eddy
d                           (40) 319 

which means that the overall error for the OSD is 76% (51%) of the OI error for the large-scale 320 

(small-scale) eddy field for α = 0.05. The overall performance of the OSD method is relatively 321 

insensitive to the selection of the significance level α. 322 

 The computational cost of the OSD and OI methods is comparable in the test cases. In the 323 

OSD method, the steep descending method for mode truncation  requires  (a) the computation of 324 

a large number Kb in Eq(26) of eigenvectors, (b) the construction and solution of the OSD 325 

equation (13) can be done once for all. In the OI method, however, the construction and solution 326 

of the OI equation (9)  must be repeated each time background/observations changes. 327 

6. Synoptic Monthly Gridded Temperature and  Salinity Fields 328 

The OSD method is used to to produce the synoptic monthly gridded (SMG) temperature 329 

(T) and salinity (S) datasets (Chu and Fan 2016a, Chu et al. 2016) from  the two world ocean 330 

observational (T, S) profile datasets [the NOAA national Centers for Environmental Information 331 

(NCEI) ‘s World Ocean Database (WOD) and  the Global Temperature and Salinity Profile 332 

Program (GTSPP)]. The synoptic monthly gridded absolute geostrophic velocity dataset (Chu 333 
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and Fan 2016b) is also established  from the SMG-WOD (T, S) fields using the P vector method 334 

(Chu 1995, Chu and Wang 2003). These datasets have been quality controlled by the NCEI 335 

professionals and are openly downloaded for public use at 336 

http://data.nodc.noaa.gov/geoportal/rest/find/document?searchText=synoptic+monthly+gridded337 

&f=searchPage. The duration is January 1945 to December 2014 for the synoptic monthly 338 

gridded WOD (T, S) and absolute geostrophic velocity fields and January 1990 to December 339 

2009 for the synoptic monthly gridded GTSPP (T, S) fields.  340 

7. Conclusions  341 

Ocean spectral data assimilation has been developed on the base of the classic theory of the 342 

generalized Fourier series expansion such that any ocean field can be represented by a linear 343 

combination of the products of basis functions (or called modes) and corresponding spectral 344 

coefficients. The basis functions are the eigenvectors of the Laplace operator, determined only 345 

by the topography with the same lateral boundary condition for the assimilated variable anomaly. 346 

They are pre-calculated and independent on any observational data and background fields. The 347 

mode truncation K depends on the observational data and a user input parameter 2
oe  (i.e., 348 

observational error variance);  and is determined via the steep-descending method.  349 

The OSD completely changes the common ocean data assimilation procedures such as  350 

OI, KF, and variational methods, where  the  background error covariance matrix B needs to be 351 

pre-determined since the weight matrix W   is used. However, the OSD uses the spectral form to 352 

represent the observational innovation at the grid points [see (17)]. Minimization of the 353 

truncation error variance leads to the optimal selection of the spectral coefficients. Thus, the  354 

background error covariance matrix B  vanishes in the OSD procedure since the weight matrix 355 
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W is not used. It is contrast  to the existing OI method, where  the B matrix is often assumed to 356 

be stationary and homogeneous with  user-defined parameters.    357 

The capability of the OSD method is demonstrated through its comparison to OI using 358 

analytical 2D fields of large and small mesoscale eddies inside a domain with 4 rigid and curved 359 

boundaries as “truth”, and addition to the “truth” of white Gaussian noises with zero mean and 360 

standard deviations (σ) varying from 0 (no noise) to 2.0 with 0.1 increment at randomly selected 361 

locations used as “observations.” A simple covariance function (Bretherton, 1976) was used for 362 

the OI procedure with three user-defined parameters (ra, rb, eo) taking 5 possible values  each.  363 

The OSD uses the same value of eo. The performance of OSD and OI is compared by  (1) 364 

patterns for each set of 125 combinations of parameters,    (2) root mean square errors for 365 

varying parameters, and (3) overall root mean square erros. The results show that the overall 366 

error reduction using  the OSD is evident, which is  76% (51%) [72% (59%)] for significance 367 

level α = 0.05 (α = 0.10) of the OI error for the large-scale (small-scale) eddy field. In context of 368 

practical application, synoptic monthly gridded world ocean temperature, salinity, and absolute 369 

geostrophic velocity datasets have been produced with the OSD method and quality controlled 370 

by the NOAA National Centers for Environmental Information (NCEI).  371 

Two issues need to be addressed on the correlation matrix. First, the comparison between 372 

the OSD and OI is at one particular instant in time. The B matrix used in the OI is based only on 373 

distance. Second, in the covariance matrix based methods, when the covariance matrix is fixed 374 

once and for all, it is well known that the very first data assimilation cycle is doing well, but 375 

subsequent cycles are less effective because the remaining error has a tendency to be orthogonal 376 

to the directions of the covariance matrix. In the OSD method,  the correction is based on 377 

spectral functions (i.e. basis functions) chosen once and for all. More sophisticated, flow based 378 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65



20 
 

covariance matrix will allow OI to perform much better. Further verification and validation 379 

under real-time ocean conditions are needed to verify the quality of OSD in time cycles and to 380 

compare between OSD and OI methods. 381 

In the two test cases (large and small eddy fields), it is clear that the optimal mode 382 

truncation KOPT (around 6 for the large eddy field and around 60 for the small eddy field) are 383 

very closed to the number of eigenvectors required to represent the truth field (Fig.  4). This 384 

shows the capability of the steep-descending mode truncation. However, the performance of the 385 

method for  the truth field is a mixture of large and small scales in different parts of the domains 386 

needs to be further investigated. 387 

 388 
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Appendix A.  Determination of H-Matrix Using All Grid Points 391 

IDW interpolation, using all grid points,  is one of the most commonly used techniques 392 

for interpolation based on the assumption that the value of hmn in H-matrix are influenced more 393 

by the nearby points and less by the more distant points. Let   394 

                                  ( ) 2 ( ) 2( ) ( )m m m
n i jd x x y y                                                 (A1) 395 

be the distance between the grid point (xi, yj) and observational point (x(m), y(m)). The influence  of 396 

the grid point xn on the observational point x(m) is given by (Spepard 1968) 397 

                                               
1

/
Nq qm m

mn n n
n

h d d                                                  (A2) 398 

where q is an arbitrary positive real number called the power parameter (typically, q = 2). 399 

Another form of hmn is given by (Franke and Nielson 1991)                            400 
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( ) ( ) 2

( ) ( ) 2

1

[( ) / ]

[( ) / ]

m m m m
n n

mn N
m m m m

n n
n

D d D dh
D d D d

,                                                (A3) 401 

where D(m) is the distance from the observational point x(m) to the most distant grid point. 402 

Eq.(A3) has been found to give better results than (A2) . As a result, cb(x(m), t),    is somewhat 403 

symmetric about each grid point. 404 

Appendix B. Determination of H-Matrix Using Neighboring Grid Points 405 

Consider the position vector x = (x, y) located inside the grid cell (Fig. B-1),  406 

                                 1,i ix x x 1j jy y y .  407 

Mathematically, the variable cb at r (inside the grid cell) can be represented approximately by a 408 

polynomial,  409 

                                             
0 0

( ) ( ) ( )
L L

b i jc A x x y yr                               (B1) 410 

where L = 1 refers to the bilinear interpolation, and L = 3 leads to the bicubic interpolation. For 411 

the bilinear interpolation, Eq.(B1) becomes  412 

                   00 10 01 11( ) ( ) ( ) ( )( )b i j i jc A A x x A y y A x x y yr                       (B2) 413 

or in matrix notation, 414 

             00 01

10 11

1
( ) 1 ( )

( )b i
j

A A
c x x

y yA A
r .                                                    (B3) 415 

Since cb at four neighboring grid points: cb(xi, yj), cb(xi+1, yj), cb(xi+1, yj), cb(xi+1, yj+1) are given, 416 

substitution of the four values into (B2) leads to the determination of the four coefficients  A00, 417 

A10, A01, A11. Using these coefficients, the bilinear interpolation (B2) becomes 418 
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1 1 1
1

1 1 1 1

1
1 1 1

1 1 1 1

( , ) ( , )
( ) ( )( ) ( )( )

( )( ) ( )( )

( , ) ( , )
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b i j b i j
b i j i j

i i j j i i j j

b i j b i j
i j i j

i i j j i i j j

c x y c x y
c x x y y x x y y

x x y y x x y y

c x y c x y
x x y y x x y y

x x y y x x y y

r

     (B4) 419 

Let the observational point r(m)  be located in the grid cell,                      420 

                                  ( )
1,

m
i ix x x ( )

1
m

j jy y y .   421 

Evaluation of cb at the observational point r(m) using (B3) leads to  422 

, 1, , 1 1, 1

( ) ( ) ( ) ( ) ( )
1 1 1 1( ) ( , ) ( , ) ( , ) ( , )

i j i j i j i j

m m m m m
b b i j b i j b i j b i jc p c x y p c x y p c x y p c x yr             (B5) 423 

where the proportional coefficients {
, 1, , 1 1, 1

( ) ( ) ( ) ( ), , ,
i j i j i j i j

m m m mp p p p } are defined by   424 

                         
,

( ) ( )
1 1( )

1 1

( )( )

( )( )i j

m m
i jm

i i j j

x x y y
p

x x y y
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1,

( ) ( )
1( )

1 1

( )( )

( )( )i j

m m
i jm

i i j j

x x y y
p

x x y y
 ,  425 

                   
, 1

( ) ( )
1( )

1 1

( )( )

( )( )i j

m m
i jm

i i j j

x x y y
p

x x y y
    

1, 1

( ) ( )
( )

1 1

( )( )

( )( )i j

m m
i jm

i i j j

x x y y
p

x x y y
 .                       (B6) 426 

It is noted that the proportionality coefficients {
, 1, , 1 1, 1

( ) ( ) ( ) ( ), , ,
i j i j i j i j

m m m mp p p p } depend solely on the 427 

location of the observational points (r(m)), and  428 

                                              
, 1, , 1 1, 1

( ) ( ) ( ) ( ) 1
i j i j i j i j

m m m mp p p p .                                       (B7) 429 

      Setting L =3 in (B1) leads to the bicubic spline interpolation,  430 

                   
00 10 01 11

2 2 3
20 02 30

2 2 3
21 12 03

( ) ( ) ( ) ( )( )

( ) ( ) ( )

( ) ( ) ( )( ) ( )

b i j i j

i j i

i j i j j

c A A x x A y y A x x y y
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                                    (B8) 431 

or in matrix notation, 432 
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r                   (B9)  433 

which is rewritten by  434 
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2
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                    (B10) 435 

Determination of the ten coefficients (A00, A01, A02, A03, A10, A11, A12, A20, A21, A30) requires not 436 

only the values, 437 

        00 ( , )b i jA c x y , 438 

        2 3
00 10 20 30 1( ) ( ) ( , )b i jA A x A x A x c x y ,        439 

        2 3
00 01 02 03 1( ) ( ) ( , )b i jA A y A y A y c x y ,  440 

        

2 2
00 10 01 11 20 02

3 2 2 3
30 21 12 03

1 1

( ) ( )

( ) ( ) ( ) ( )

( , ),b i j

A A x A y A x y A x A y

A x A x y A x y A y

c x y

                                            (B11) 441 

but also the derivatives at the neighboring grid points  442 

        10 1 1( , ) / [ ( , ) ( , )] / 2 ,b i j b i j b i jA c x y x c x y c x y x  443 

        01 1 1( ) / [ ( , ) ( , )] / 2 ,,b i j b i j b i jA c x y y c x y c x y y  444 
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                                      (B12) 448 

The solution of the above set of 10 linear algebraic equations (B11) and (B12) leads to the 449 

determination of the ten coefficients (A00, A01, A02, A03, A10, A11, A12, A20, A21, A30). It is noted that 450 

values of  cb at the 10 neighboring grid points (xi, yj), (xi+1, yj), (xi, yj+1), (xi+1, yj+1), (xi-1, yj),       451 

(xi, yj-1), (xi+2, yj), (xi-1, yj+1), (xi+1, yj-1), (xi, yj+2) are used to solve (B11) and (B12). Following 452 

(B10), interpolation of cb at the 10 neighboring grid points on the observational r(m) [=(x(m), y(m)] 453 

using the bi-cubic interpolation is given by  454 
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                        (B13) 455 

Thus, an equation similar to (B5) can be written for evaluating cb at the observational point r(m) 456 

with the known 10 coefficients (A00, A01, A02, A03, A10, A11, A12, A20, A21, A30,  457 
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where the 10  corresponding coefficients {
, 1, , 1 1, 1

( ) ( ) ( ) ( ), , ,
i j i j i j i j

m m m mp p p p , 
1,
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i j
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, 2
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i j

mp , 
1, 1

( )
i j

mp , 
1, 1

( )
i j

mp , 459 

, 2

( )
i j

mp } are analytically determined and depends solely on the location of the observational points 460 

(r(m)), and 461 

, 1, , 1 1, 1 1, , 1 , 2 1, 1 1, 1 , 2

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1
i j i j i j i j i j i j i j i j i j i j

m m m m m m m m m mp p p p p p p p p p                (B15) 462 

Since only 10 neighboring grid points are used to interpolate at the observational point r(m) using 463 

the bicubic interpolation, the matrix H has only 10 non-zero values in each row. However, it is 464 

too tedious to write it out.  465 

Appendix C. Basis Functions 466 

As pointed by Chu et al. (2015), three necessary conditions should be satisfied in 467 

selection of basis-functions { ( )k r }: (i) satisfaction of the same homogeneous boundary 468 

condition of the assimilated variable anomaly, (ii) orthonormality, and (iii) independence on the 469 

assimilated variables. The first necessary condition requires the same boundary condition for  (c 470 

– cb) and the basis functions { k }. The second necessary condition is given by  471 

                                    ' '( ) ( )k k kkdr r r ,                                                      (C1) 472 

where δkk’ is the Kronecker delta, 473 

                                             '

0    if  '
1     if  'kk

k k
k k

.                                                          (C2) 474 

Due to their independence on the assimilated variable (the third necessary condition), the basis-475 

functions are available prior to the data assimilation.  476 

The basis functions are the eigenvectors { k } of the Laplacian operator with the same 477 

boundary condition as the variable anomaly (c – cb), 478 
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      2
k,      1 2( ) ( ) | 0,    1,...,k k k kb b ke 22(2((2((2 .                         (C3) 479

Here, {λk} are the eigenvalues, e is the unit vector normal to the boundary;  τ denotes a moving 480

point along the boundary, and [ 1 2( ),   ( )b b ] are parameters varying with τ. The boundary 481

condition in (C3) becomes the Dirichlet boundary condition when b1 = 0, and the Neumann 482

boundary conditions when b2 = 0. As pointed by Chu et al. (2015),  different variable anomalies 483

have different [ 1 2( ),   ( )b b ]. For example, the temperature, salinity, and velocity potential 484

anomalies have b2 = 0 for the rigid boundary and b1 = 0 for the open boundary. However, the  485

anomaly has b1 = 0 for the rigid boundary and b2 = 0 for the open boundary. It is obvious that the 486

eigenvectors { k } are orthonormal and independent of the assimilated variables.  487

Appendix D. Vapnik-Chervonenkis Dimension for  Mode Truncation  488

The Vapnik-Chervonenkis dimension (Vapnik 1983; Chu et al. 2003a, 2015) is to seek 489

the optimal mode truncation on the base of the first term of the  analysis error (23),  490

                                             

( ) 2

1
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n n n
T n
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f D D
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N
ε Fε                                (D1) 491

with the cost function  492

             
*

( , , ),

ln(2 / ) 1 ln( / )
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/

K trJ J K M

M K M
K M J K

M K

                   (D2) 493

Here, α ( 1) is the significance level. J* is the upper bound of Jtr. For a given M, Jtr decreases 494

monotonically with K;  μ increases with K if α is given. The optimal mode truncation is through 495

the minimization of the cost function,  496

                                                    min ( )
optK KK

J J .                                                    (D3) 497
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This method neglects observational error [only first term of (23) considered] and ignores the 498 

model resolution (represented by the total number of grid points N).    The ratio of observational 499 

points (M) and the spectral truncation (K) is the key to determine the optimal mode truncation 500 

Kopt.  501 

Appendix E.  B-Matrix  502 

The B matrix is often established based on the assumption of statistical stationarity and 503 

homogeneity of the reconstructed field with a simple covariance function, for example 504 

Bretherton et al. (1976) proposed  505 

                 
2 2

22
2 2,     1 exp ,    ,   ij ij

ij ij ij i j b aN N
b a

r r
b b r r r

r r
B r r ,              (E1) 506 

depending on distances only. Here,  rij is the distance between the two grid points ri and raj;  ray 507 

and rb are the decorrelation scale and zero crossing. To conduct the OI data assimilation, the 508 

three parameters (eo, ra, rb) need to be defined by user. Chu et al. (1997, 2002)  compute auto-509 

correlation functions from historical observational data to fit the Gaussian function and get de-510 

correlation scales for the B matrix. Recent studies show that some variables such as upper ocean 511 

current speed does not satisfy the  normal distribution, but the Weibull distribution (Chu 2008, 512 

2009).  513 
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Table 1. Dependence of KOPT on (σ, eo) for the large-eddy field shown in Fig. 6a with 622 
significance level α = 0.05.  623 
   eo  
σ   

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8 2.0 

0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 
0.1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 
0.2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 
0.3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 
0.4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 6 
0.5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 6 6 
0.6 7 7 7 7 7 7 7 7 7 7 7 7 7 6 6 6 
0.7 7 7 7 7 7 7 7 7 7 7 7 7 7 6 6 6 
0.8 7 7 7 7 7 7 7 7 7 7 7 7 6 6 6 6 
0.9 7 7 7 7 7 7 7 7 7 7 7 6 6 6 6 6 
1.0 7 7 7 7 7 7 7 7 7 6 6 6 6 6 6 6 
1.2 7 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 
1.4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 
1.6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 
1.8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 
2.0 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 
 624 
 625 
Table 2. Dependence of KOPT on (σ, eo) for the small-eddy field shown in Fig. 6b  with 626 
significance level α = 0.05.   627 
   eo  
σ    

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1.4 1.6 1.8 2.0 

0  82   82   82   82   67   67   67   67   67   67   58 58 58 58 58 58 
0.1  82   82   82   67   67   67   67   67   67   58   58 58 58 58 58 58 
0.2  67   67   67   67   67   67   67   67   67   58   58 58 58 58 58 58 
0.3  67   67   67   67   67   67   67   67   58   58   58 58 58 58 58 58 
0.4  67   67   67   67   67   67   67   58   58   58   58 58 58 58 58 58 
0.5  67   67   67   67   67   67   58   58   58   58   58 58 58 58 58 58 
0.6  67   67   67   67   67   58   58   58   58   58   58 58 58 58 58 58 
0.7  67   67   67   58   58   58   58   58   58   58   58 58 58 58 58 58 
0.8  58   58   58   58   58   58   58   58   58   58   58 58 58 58 58 58 
0.9  58   58   58   58   58   58   58   58   58   58   58 58 58 58 58 58 
1.0  58   58   58   58   58   58   58   58   58   58   58 58 58 58 58 58 
1.2  58   58   58   58   58   58   58   58   58   58   58 58 58 58 58 58 
1.4  58   58   58   58   58   58   58   58   58   58   58 58 58 58 58 58 
1.6  58   58   58   58   58   58   58   58   58   58   58 58 58 58 58 58 
1.8 178 178 178 178 178 178   58   58   58   58   58 58 58 58 58 58 
2.0 178 178 178 178 178 178 178 178 178 178 178 58 58 58 58 58 
 628 
 629 
 630 
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Figure Captions 633 

 634 
Fig. 1.   Illustration of ocean data assimilation with cb located at the grid points, and  co located at  635 
the points ‘*”. The ocean data assimilation is to convert the innovation,           d = co – Hcb,  636 
from the observational points to the grid points.  637 
 638 
Fig. 2.  Horizontal non-dimensional domain with four curved rigid boundaries with each 639 
boundary given by Eq. (32).  640 
 641 
Fig. 3.  Basis functions from ϕ1 to ϕ12 for the domain depicted by Eq.(32).                                         642 
            643 
Fig. 4. “Truth” field ct taken as (a) the analytical function (33) with large-scale eddy field Lx=3, 644 
Ly = 2, β = π/2, and (b) the analytical function (34) with small-scale eddy field Lx = 7, Ly = 5, β = 645 
0.  646 
 647 
Fig. 5. Randomly selected locations (total: 300) inside the domain as “observational” points. 648 
 649 
Fig. 6a. “Observational” data (co) from Fig. 4a with added white Gaussian noises of zero mean 650 
and various standard deviations: (a) 0 (i.e., no noise) (b) 0.2, (c) 0.5, (d) 1.0, (e) 1.6, and (f) 2.0.  651 
 652 
Fig. 6b. “Observational” data (co) from Fig. 4b with added white Gaussian noises of zero mean 653 
and various standard deviations: (a) 0 (i.e., no noise) (b) 0.2, (c) 0.5, (d) 1.0, (e) 1.6, and (f) 2.0.                           654 
                                          655 
Fig. 7.  Dependence of 2

aE  and γK on K for the “observational” data for the small-scale eddy field 656 
with σ = 0.8 and eo =0.2 at two significant levels of (a) α = 0.05 (z 0.05 = 1.645) and (b) α = 0.10 657 
(z 0.10 = 1.291) as the threshold of mode truncation [see Eq.(27)]. The optimal mode truncation is 658 
58 for α = 0.05 and 67 for α = 0.10.   659 
 660 
Fig. 8a.  The analysis field ca obtained by the spectral data assimilation [see Eq.(13)] using the 661 
steep-descending mode truncation with the significance level of α = 0.05 from the “observations” 662 
shown in Fig. 6a with 6 noise (σ) levels (0, 0.2, 0.5, 1.0, 1.6, 2.0) and 4 values of eo: (a) 0.2,  663 
(i.e., no noise), (b) 0.5, (c) 1.0, and  (d) 2.0.  664 
                             665 
Fig. 8b.  The analysis field ca obtained by the spectral data assimilation [see Eq.(13)] using the 666 
steep-descending mode truncation with the significance level of α = 0.05 from the “observations” 667 
shown in Fig. 6b with 6 noise (σ) levels (0, 0.2, 0.5, 1.0, 1.6, 2.0) and 4 values of eo: (a) 0.2,  668 
(i.e., no noise), (b) 0.5, (c) 1.0, and  (d) 2.0.  669 
 670 
Fig. 9a. The analysis field ca obtained by the OI data assimilation [see Eq.(9)] for “observations” 671 
shown in Fig. 6a various noise levels with various combinations of user-defined parameters (ra, 672 
rb, eo,):  (2, 2.5, 1), (4, 5.5, 1), (6, 8.5, 1), and (6, 8.5, 2).  673 
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 675 
 676 
Fig. 9b. The analysis field ca obtained by the OI data assimilation [see Eq.(9)] for “observations” 677 
shown in Fig. 6b various noise levels with various combinations of user-defined parameters (ra, 678 
rb, eo,): (2, 2.5, 1), (4, 5.5, 1), (6, 8.5, 1), and (6, 8.5, 2).    679 
 680 
Fig. 10.  Comparison between ( , )OI

aR r  and ( )OSDR  of the analysis fields from the same 681 
“observations” with different noise levels with varying parameter ra = (2, 3, 4, 5, 6) from top to 682 
bottom with the left panels using “observations” shown in Fig. 6a and  the right  panels using 683 
“observations” in Fig. 6b. The solid curves represent the OSD with the significance level of α = 684 
0.05; and the dotted curves refer to the OI.  685 
 686 
Fig. 11.  Comparison between ( , )OI

bR r  and ( )OSDR  of the analysis fields from the same 687 
“observations” with different noise levels with different  (rb – ra) = (0.5, 1.0, 1.5, 2.0, 2.5) with 688 
the left panels using “observations” shown in Fig. 6a and  the right  panels using “observations” 689 
in Fig. 6b. The solid curves represent the OSD with the significance level of α = 0.05; and the 690 
dotted curves refer to the OI. 691 
 692 
Fig. 12. Comparison between ( , )OI

oR e  and ( , )OSD
oR e  of the analysis fields from the same 693 

“observations” with different noise levels with varying parameter eo = (0.2, 0.5, 1.0, 1.5, 2.0) 694 
from top to bottom with the left panels using “observations” shown in Fig. 6a and  the right  695 
panels using “observations” in Fig. 6b. The solid curves represent the OSD with the significance 696 
level of α = 0.05; and the dotted curves refer to the OI.  697 
 698 
Fig. 13.  Dependence of the error ratio κ [see Eq.(39)] on σ using  “observations” in Fig. 6a 699 
(represented by dots) and  in Fig. 6b (represented by *) with two different significance levels: (a) 700 
α = 0.05, and (b) α = 0.10.   701 
                         702 
Fig. B1.  Interpolation at an observational point r(m) from four neighboring grid points. 703 
 704 
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 705 
Fig. 1.   Illustration of ocean data assimilation with cb located at the grid points, and  co located at  706 
the points ‘*”. The ocean data assimilation is to convert the innovation,           d = co – Hcb,  707 
from the observational points to the grid points.  708 
 709 
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 711 
 712 

Fig. 2.  Horizontal non-dimensional domain with four curved rigid boundaries with each 713 
boundary given by Eq. (32).  714 
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 715 
 716 
Fig. 3.  Basis functions from ϕ1 to ϕ12 for the domain depicted by Eq.(32).   717 
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                                        718 

            719 
Fig. 4. “Truth” field ct taken as (a) the analytical function (33) with large-scale eddy field Lx=3, 720 
Ly = 2, β = π/2, and (b) the analytical function (34) with small-scale eddy field Lx = 7, Ly = 5, β = 721 
0.   722 
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 723 
 724 
Fig. 5. Randomly selected locations (total: 300) inside the domain as “observational” points. 725 
  726 
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 727 
Fig. 6a. “Observational” data (co) from Fig. 4a with added white Gaussian noises of zero mean 728 
and various standard deviations: (a) 0 (i.e., no noise) (b) 0.2, (c) 0.5, (d) 1.0, (e) 1.6, and (f) 2.0.  729 
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 733 
Fig. 6b. “Observational” data (co) from Fig. 4b with added white Gaussian noises of zero mean 734 
and various standard deviations: (a) 0 (i.e., no noise) (b) 0.2, (c) 0.5, (d) 1.0, (e) 1.6, and (f) 2.0.  735 
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                            737 

                                            738 
                                   739 
Fig. 7.  Dependence of 2

aE  and γK on K for the “observational” data for the small-scale eddy field 740 
with σ = 0.8 and eo =0.2 at two significant levels of (a) α = 0.05 (z 0.05 = 1.645) and (b) α = 0.10 741 
(z 0.10 = 1.291) as the threshold of mode truncation [see Eq.(27)]. The optimal mode truncation is 742 
58 for α = 0.05 and 67 for α = 0.10.   743 
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                                 749 

 750 
Fig. 8a.  The analysis field ca obtained by the spectral data assimilation [see Eq.(13)] using the 751 
steep-descending mode truncation with the significance level of α = 0.05 from the “observations” 752 
shown in Fig. 6a with 6 noise (σ) levels (0, 0.2, 0.5, 1.0, 1.6, 2.0) and 4 values of eo: (a) 0.2,  753 
(i.e., no noise), (b) 0.5, (c) 1.0, and  (d) 2.0.  754 
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                            757 

 758 
Fig. 8b.  The analysis field ca obtained by the spectral data assimilation [see Eq.(13)] using the 759 
steep-descending mode truncation with the significance level of α = 0.05 from the “observations” 760 
shown in Fig. 6b with 6 noise (σ) levels (0, 0.2, 0.5, 1.0, 1.6, 2.0) and 4 values of eo: (a) 0.2,  761 
(i.e., no noise), (b) 0.5, (c) 1.0, and  (d) 2.0.  762 
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 764 
Fig. 9a. The analysis field ca obtained by the OI data assimilation [see Eq.(9)] for “observations” 765 
shown in Fig. 6a various noise levels with various combinations of user-defined parameters (ra, 766 
rb, eo,):  (2, 2.5, 1), (4, 5.5, 1), (6, 8.5, 1), and (6, 8.5, 2).  767 
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 770 
Fig. 9b. The analysis field ca obtained by the OI data assimilation [see Eq.(9)] for 771 
“observations” shown in Fig. 6b various noise levels with various combinations of user-772 
defined parameters (ra, rb, eo,): (2, 2.5, 1), (4, 5.5, 1), (6, 8.5, 1), and (6, 8.5, 2).    773 
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 776 
Fig. 10.  Comparison between ( , )OI

aR r  and ( )OSDR  of the analysis fields from the same 777 
“observations” with different noise levels with varying parameter ra = (2, 3, 4, 5, 6) from top to 778 
bottom with the left panels using “observations” shown in Fig. 6a and  the right  panels using 779 
“observations” in Fig. 6b. The solid curves represent the OSD with the significance level of α = 780 
0.05; and the dotted curves refer to the OI.  781 
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 783 
 784 

 785 
 786 
Fig. 11.  Comparison between ( , )OI

bR r  and ( )OSDR  of the analysis fields from the same 787 
“observations” with different noise levels with different  (rb – ra) = (0.5, 1.0, 1.5, 2.0, 2.5) with 788 
the left panels using “observations” shown in Fig. 6a and  the right  panels using “observations” 789 
in Fig. 6b. The solid curves represent the OSD with the significance level of α = 0.05; and the 790 
dotted curves refer to the OI. 791 
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 793 
Fig. 12. Comparison between ( , )OI

oR e  and ( , )OSD
oR e  of the analysis fields from the same 794 

“observations” with different noise levels with varying parameter eo = (0.2, 0.5, 1.0, 1.5, 2.0) 795 
from top to bottom with the left panels using “observations” shown in Fig. 6a and  the right  796 
panels using “observations” in Fig. 6b. The solid curves represent the OSD with the significance 797 
level of α = 0.05; and the dotted curves refer to the OI. 798 
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